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A Nonlinear and Dispersive APML ABC
for the FD-TD Methods

Masafumi Fujii and Peter Russer

Abstract—We have developed a modified anisotropic perfectly
matched layer (APML) absorbing boundary condition (ABC) for
the finite-difference time-domain (FD-TD) analysis of nonlinear
and dispersive media. The formulation is a simple modification
to the original nonsplit APML, and retains the robustness and
the simple implementation in the FD-TD and the higher-order
schemes. The proposed ABC has a broad area of application,
and is especially suitable for the analysis of nonlinear optical
waveguide problems.

Index Terms—absorbing boundary conditions (ABC), finite-dif-
ference time-domain (FD-TD), nonlinear dispersive anisotropic
perfectly-matched layer (APML).

I. INTRODUCTION

T IME-DOMAIN numerical techniques have been of great
importance in modeling electromagnetic and optical wave

propagation, and the absorbing boundaries play an important
role to enable analysis of infinite space of open structures.
Among many absorbing boundaries proposed in literature
[1], Berenger’s perfectly matched layer (PML) absorbing
boundary conditions (ABC) [2] has achieved a significantly
high absorption rate, thereby reducing the area of numerical
analysis. The anisotropic PML (APML) has been proposed by
Gedney [3], which provides an unsplit-field formulation and
simple numerical implementation.

The PML is an unique absorbing boundary that is straightfor-
wardly applicable to the high-order finite-difference methods
as well as the wavelet-based techniques [4], [5]; the one-way
absorbing boundaries derived from the wave equation has dif-
ficulty in the consistent termination of the stencil of the high-
order methods.

A variety of modified PMLs have been proposed for the linear
dispersive media [6], [7], while only limited publication can be
found for nonlinear dispersive media. Some techniques based
on the Berenger’s split-field PML have been proposed for non-
linear media [8], [9]; however, [8] is not applicable to dispersive
media because the time retardation of the polarization requires
the incorporation of the electric field while [8] formulates with
the flux density. The other technique [9] is too complicated to
implement in the corner of the analysis region.
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In this paper, we have extended Gedney’s APML to general
nonlinear dispersive media by introducing the auxiliary differ-
ential equation (ADE) techniques [10], nevertheless, in a modi-
fied manner to fit in our PML formulation, which, as in [11],
does not require solving a system of equations for multipole
dispersive media. The proposed absorbing boundary has been
applied to the analysis of optical pulse propagation in the in-
stantaneous Kerr nonlinearity and the linear Lorentz dispersive
media; the performance of the absorption has been evaluated
numerically.

II. THEORY

We consider two-dimensional TE polarized wave propaga-
tion in the -plane of the Cartesian coordinates. Starting with
a constitutive relation between the flux density and the elec-
tric field in the medium of frequency dependent relative di-
electric constant , we write in the frequency domain as in
[1]

(1)

where is the dielectric constant of free space. The time-har-
monic Ampère’s law within the APML is written as

(2)

where

(3)

for , and . The APML parameters and normally
have an polynomial grading.

Now, we introduce two auxiliary variables and defined
by

(4)

and

(5)

The variables and represent the equivalent flux density
and the equivalent electric field in the APML loss space, respec-
tively. Substituting (4) into (2), and applying the usual ADE pro-
cedure of the inverse Fourier transform, i.e., replacing the factor

with differentiation , we obtain

(6)
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Equation (6) is discretized using the semi-implicit scheme for
the right-hand side of the equation, yielding

(7)

where is the spatial difference approximation

(8)
which can be replaced by the high-order finite-difference
scheme or the wavelet-based schemes [4], [5].

Then, the instantaneous Kerr nonlinearity and the linear
Lorentz dispersion properties are implemented by the ADE
technique, nevertheless, with a slight modification from [11] to
fit in our PML media. From (5), we can write

(9)

where and denote the linear and the nonlinear polar-
ization, and is the relative delectric constant in the limit of
infinite frequency. By applying the inverse Fourier transform,
the expression in the time domain is obtained as

(10)

The polarization of the linear Lorentz dispersive media is
given by

(11)

where denotes the electric susceptibility, is the Lorentz
resonant frequency, is the difference of the relative dielec-
tric constant caused by the resonance, andis the damping
factor. This is transformed into the differential equation by re-
placing with , and with

(12)

which leads to the time difference form of as

(13)

with the coefficients

(14)

The polarization of the instantaneous Kerr nonlinear media is
simply given by

(15)

where is the strength of the nonlinearity related to the linear
part of the refractive index and the nonlinear part to the re-
fractive index m V by . The time differ-
ence expression is given by

(16)

By substituting (13) and (16) into (10), and solving with re-
spect to , we obtain the nonlinear equation

(17)

Equation (17) can be solved by a simple iteration method as in
[12]. Because we model the dispersive media by the relation
between the polarization and the electric field, one can solve
the nonlinear equation (17) with including arbitrary number of
polarization factors without solving a system of equations [11].

Finally, from (4) and (5), we have

(18)

Substituting (3) to (18) leads to

(19)

By the inverse Fourier transformation and discretizing the re-
sulting differential equation, we obtain

(20)

To summarize, computing (7), (17), (13), and (20) in sequence
completes the update of the electric field. The magnetic fields
can be updated by the standard APML algorithm for nonmag-
netic media.

III. N UMERICAL EXPERIMENTS

The performance of the modified APML has been evaluated
by analyzing pulse propagation in a 2.52.5- m-square re-
gion. The space step is m. In order
to reduce the computational region, the boundary conditions
are set to be the perfect magnetic conductor (PMC) walls at

m, and the interface between the real domain
and the PML has been placed at m. The APML
conductance has fourth-order polynomial grading with the max-
imum value of [3].

The carrier frequency of the excitation pulse is 231 THz, i.e.,
the free-space wavelength is m; the time envelope
is a raised cosine function having approximately ten carrier cy-
cles in it, which corresponds to the20-dB bandwidth of ap-
proximately 80 THz. The transverse profile of the pulse is a hy-
perbolic secant function with its full width at half magnitude
(FWHM) of 0.65 m. The media has a instantaneous Kerr non-
linearity of m /V , and a linear Lorentz dis-
persion of rad/s, 1/s, ,
and .
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Fig. 1. Time series data for the large signal excitation (7� 10 V/m). - - -:
excitation; —: at one cell in front of the APML interface.

(a)

(b)

Fig. 2. Relative local reflection errors of the five-layer modified APML. (a)
For large-signal excitation 7� 10 V/m and (b) for small-signal excitation
2� 10 V/m.

With this choice, the numerical dispersion of the finite differ-
ence-time domain (FD-TD) lattice is sufficiently smaller than
the Lorentz dispersion, and the carrier frequency is in the range
of anomalous dispersion of the Lorentz media; the group ve-
locity dispersion parameter ranges from 100 to 5 ps /m
over the 20-dB bandwidth from 190 to 270 THz, where tem-
poral soliton pulse can be formed by an excitation with suffi-
cient intensity. Two cases of the excitation pulse amplitude 7
10 V/m and 2 10 V/m have been tested for comparison; the
former is of enough strength for the soliton formation, while the
latter is not. The pulse is excited such that it propagates along
the -direction, and the time signal is detected one cell in front
of the PML interface. The reference structure has 7.57.5- m
region terminated with perfect electric conductor (PEC) walls
instead of PML.

The time series data for the large excitation amplitude is
shown in Fig. 1; it is noted that the pulse waveform exhibits the
symptom of triangular soliton pulse formation.

The ratio of local reflection errors to the maximum of the ref-
erence time data is plotted in Fig. 2(a) and (b) for the large and
the small excitation amplitudes, respectively. The APML has
five layers in all the cases. For the small signal, the absorption is
good, i.e., approximately 60 dB or less reflection is achieved,
while for the large signal, the absorption is about one order of
magnitude worse. When ten-layer APML was used, some im-
provement was observed for the small signal absorption, while
little improvement was observed for the large signal.

The signal amplitude dependence of the absorption may be
due to the fact that the time stepping scheme of the FD-TD has
been developed for the linear response of the electric field, while
the third-order nonlinearity causes more rapid response, which
leads to less accurate solution. Preliminary experiments have
shown that when the linear APML is applied for this nonlinear
pulse, more than 10% of reflection occurs; the modified version
in this paper exhibits much better performance.

IV. CONCLUSION

A modified APML absorbing boundary condition has been
developed for the FD-TD analysis of nonlinear and dispersive
media. The performance of the APML was investigated numer-
ically and found that the absorption depends on the strength of
the nonlinearity; typically 35 to 60 dB reflection has been
obtained with a five-layer APML.
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