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A Nonlinear and Dispersive APML ABC
for the FD-TD Methods

Masafumi Fujii and Peter Russer

Abstract—We have developed a modified anisotropic perfectly  In this paper, we have extended Gedney’s APML to general
matched layer (APML) absorbing boundary condition (ABC) for  nonlinear dispersive media by introducing the auxiliary differ-
the finite-difference time-domain (FD-TD) analysis of nonlinear ontig) equation (ADE) techniques [10], nevertheless, in a modi-

and dispersive media. The formulation is a simple modification . . . .
to the original nonsplit APML, and retains the robustness and fied manner to fit in our PML formulation, which, as in [11],

the simple implementation in the FD-TD and the higher-order does not require solving a system of equations for multipole
schemes. The proposed ABC has a broad area of application, dispersive media. The proposed absorbing boundary has been

and is especially suitable for the analysis of nonlinear optical applied to the analysis of optical pulse propagation in the in-
waveguide problems. stantaneous Kerr nonlinearity and the linear Lorentz dispersive

Index Terms—absorbing boundary conditions (ABC), finite-dif- media; the performance of the absorption has been evaluated
ference time-domain (FD-TD), nonlinear dispersive anisotropic numerically.
perfectly-matched layer (APML).

Il. THEORY

. INTRODUCTION We consider two-dimensional TE polarized wave propaga-

IME-DOMAIN numerical techniques have been of gredion in thexrz-plane of the Cartesian coordinates. Starting with

importance in modeling electromagnetic and optical waconstitutive relation between the flux densiity and the elec-
propagation, and the absorbing boundaries play an import#ig field £, in the medium of frequency dependent relative di-
role to enable analysis of infinite space of open structuredJectric constant (w), we write in the frequency domain as in
Among many absorbing boundaries proposed in literatuldl
[1], Berenger's perfectly matched layer (PML) absorbing . .
boundary conditions (ABC) [2] has achieved a significantly Dy(w) = Er(w) By (w) @)
high absorption rate, thereby reducing the area of numerigalere s is the dielectric constant of free space. The time-har-
analysis. The anisotropic PML (APML) has been proposed By, nic Ampére’s law within the APML is written as
Gedney [3], which provides an unsplit-field formulation and

simple numerical implementation. 0H,(w) O0H,(w) . SpSy =~
The PML is an unique absorbing boundary that is straightfor- oy~ JwEeEr(w) , Eyw) (@
wardly applicable to the high-order finite-difference methods
as well as the wavelet-based techniques [4], [5]; the one-w¥§ere
absorbing boundaries derived from the wave equation has dif- se = Re + o¢ 3)

ficulty in the consistent termination of the stencil of the high-

order methods.
A variety of modified PMLs have been proposed for the IineeL?rg = =, y, andz. The APML parameters; andsg normally

. : . . T L ave an polynomial grading. } :
dispersive me(_:ha [6], [7]’ Wh.'le only !'m'ted publlcat|pn can be Now, we introduce two auxiliary variablg®, and&, defined
found for nonlinear dispersive media. Some techniques based

on the Berenger’s split-field PML have been proposed for non-=

Jw&

linear media [8], [9]; however, [8] is not applicable to dispersive D, (w) = 50&@)& E, (w) (4)
media because the time retardation of the polarization requires Y sy '

the incorporation of the electric field while [8] formulates withand

the flux density. The other technique [9] is too complicated to g (w) = 1 D, (). (5)
implement in the corner of the analysis region. Y Eo-&r(w) Y

The variablesﬁy andéfy represent the equivalent flux density
and the equivalent electric field in the APML loss space, respec-
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Equation (6) is discretized using the semi-implicit scheme fwherex((f’) is the strength of the nonlinearity related to the linear
the right-hand side of the equation, yielding part of the refractive index, and the nonlinear part to the re-
fractive indexn, (m?/V?) by Xff” = 2ngney. The time differ-

nt1 _ 260k — 041 2504t HY (7) ence expression is given by

vk T 28, + o AL PR T 280k, + oAl

n+1 _ (3)en+143
whereH? is the spatial difference approximation Prr = Eoxo (7). (16)
/2 2 2 2 By substituting (13) and (16) into (10), and solving with re-
Hy — _miktl/2  Twikol/2  Taitl/2k 7zicl/2k spectto€” !, we obtain the nonlinear equation
Az Az
(8) np1 . Dyt —ap Py —bLPr T — ey
which can be replaced by the high-order finite-difference & = (17)

2
scheme or the wavelet-based schemes [4], [5]. €ofoo + 50X63) (5?7+1)
Then, the instantaneous Kerr nonlinearity and the lineggyation (17) can be solved by a simple iteration method as in
Lorentz dispersion properties are implemented by the ADE2] Because we model the dispersive media by the relation
technique, nevertheless, with a slight modification from [11] tfgetween the polarization and the electric field, one can solve
fitin our PML media. From (5), we can write the nonlinear equation (17) with including arbitrary number of
- B . polarization factors without solving a system of equations [11].
Dy(w) =Eo&:Ey(w) Finally, from (4) and (5), we have
=&0€uc€y(w) + Pr(w) + Pnr(w 9 - .
0 y(w) + Pr(w) + Pnr(w) 9) £,(w) = SiEy(w). (18)

whereP, and Py denote the linear and the nonlinear polar-
ization, andf, is the relative delectric constant in the limit ofSubstituting (3) to (18) leads to

infinite frequency. By applying the inverse Fourier transform,
the expression in the time domain is obtained as E,w) (#y+ L) = By(w) (ke + —2-). (19
Jw&o Jwéo
Dy(t) = Eoocy (1) + Pr(t) + Prr(t)- (10) By the inverse Fourier transformation and discretizing the re-

The polarization of the linear Lorentz dispersive media Iséultlng differential equation, we obtain

given by gl _ 2k:E0 — 0L AL n 1
£ AL L2 vk T 9k,E0 + o At VR T 2K £ 4 0, At
~ ~ 0 p p
PL(CU) OXI)(“)) J(w> UJ% + 2jw6p — w2 y<w) ( ) . |:(2f€y50 + UyAt)gyj}k _ (2,%/50 _ JyAt) y7i7k:| . (20)

wherey, denotes the electric susceptibility, is the Lorentz To summarize, computing (7), (17), (13), and (20) in sequence
resonant frequencyA&, is the difference of the relative dielec-completes the update of the electric field. The magnetic fields
tric constant caused by the resonance, gnis the damping can be updated by the standard APML algorithm for nonmag-
factor. This is transformed into the differential equation by reretic media.
placingjw with 9/0t, and—w? with 9% /9t>

[ll. NUMERICAL EXPERIMENTS

OPL(t) N 0’Pr(t)

wPL(t) + 26, = eAewyEy(t) (12)  The performance of the modified APML has been evaluated

ot ot? . L
by analyzing pulse propagation in a 262.5um-square re-
which leads to the time difference form B, as gion. The space step 8z = Az = 0.0125 um. In order
ntl . - N to reduce the computational region, the boundary conditions
Pr =aLP" +bLP +eLéy (13) are set to be the perfect magnetic conductor (PMC) walls at

x = z = 0 pum, and the interface between the real domain

with the coefficients and the PML has been placedmat z = 2.5 um. The APML

2 — w2AL? conductance has fourth-order polynomial grading with the max-
“=T 5,At imum value ofr ., = 1/(307 /e Az) [3].

The carrier frequency of the excitation pulse is 231 THz, i.e.,

by = _1_761’“ the free-space wavelengthig = 1.3 um; the time envelope
1+ 6,At is a raised cosine function having approximately ten carrier cy-

E0AE, AP W] cles in it, which corresponds to the20-dB bandwidth of ap-
cr = m (14) proximately 80 THz. The transverse profile of the pulse is a hy-

perbolic secant function with its full width at half magnitude
The polarization of the instantaneous Kerr nonlinear media(lSWHM) of 0.65,:m. The media has a instantaneous Kerr non-
simply given by linearity ofxgg) = 2.0x 1072 m?/V2, and alinear Lorentz dis-
persion ofv, = 9.0x 10 rad/s g, = 5.0x10° 1/s,AE, = 3.0,
Prr(t) = EoxP &, () (15) andé. = 6.05.
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Fig. 1. Time series data for the large signal excitationk(Z0® V/m). - - -
excitation; —: at one cell in front of the APML interface.
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Fig. 2. Relative local reflection errors of the five-layer modified APML. (a) [5]
For large-signal excitation % 10° V/m and (b) for small-signal excitation

2 x 1¢° Vim.

With this choice, the numerical dispersion of the finite differ-
ence-time domain (FD-TD) lattice is sufficiently smaller than
the Lorentz dispersion, and the carrier frequency is in the range

The time series data for the large excitation amplitude is
shown in Fig. 1; it is noted that the pulse waveform exhibits the
symptom of triangular soliton pulse formation.

The ratio of local reflection errors to the maximum of the ref-
erence time data is plotted in Fig. 2(a) and (b) for the large and
the small excitation amplitudes, respectively. The APML has
five layers in all the cases. For the small signal, the absorption is
good, i.e., approximately-60 dB or less reflection is achieved,
while for the large signal, the absorption is about one order of
magnitude worse. When ten-layer APML was used, some im-
provement was observed for the small signal absorption, while
little improvement was observed for the large signal.

The signal amplitude dependence of the absorption may be
due to the fact that the time stepping scheme of the FD-TD has
been developed for the linear response of the electric field, while
the third-order nonlinearity causes more rapid response, which
leads to less accurate solution. Preliminary experiments have
shown that when the linear APML is applied for this nonlinear
pulse, more than 10% of reflection occurs; the modified version
in this paper exhibits much better performance.

IV. CONCLUSION

A modified APML absorbing boundary condition has been
developed for the FD-TD analysis of nonlinear and dispersive
media. The performance of the APML was investigated numer-
ically and found that the absorption depends on the strength of
the nonlinearity; typically—35 to —60 dB reflection has been
obtained with a five-layer APML.
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